Local Discriminant Hyperalignment for Multi-Subject fMRI Data Alignment
نویسندگان
چکیده
Multivariate Pattern (MVP) classification can map different cognitive states to the brain tasks. One of the main challenges in MVP analysis is validating the generated results across subjects. However, analyzing multi-subject fMRI data requires accurate functional alignments between neuronal activities of different subjects, which can rapidly increase the performance and robustness of the final results. Hyperalignment (HA) is one of the most effective functional alignment methods, which can be mathematically formulated by the Canonical Correlation Analysis (CCA) methods. Since HA mostly uses the unsupervised CCA techniques, its solution may not be optimized for MVP analysis. By incorporating the idea of Local Discriminant Analysis (LDA) into CCA, this paper proposes Local Discriminant Hyperalignment (LDHA) as a novel supervised HA method, which can provide better functional alignment for MVP analysis. Indeed, the locality is defined based on the stimuli categories in the train-set, where the correlation between all stimuli in the same category will be maximized and the correlation between distinct categories of stimuli approaches to near zero. Experimental studies on multi-subject MVP analysis confirm that the LDHA method achieves superior performance to other state-of-the-art HA algorithms.
منابع مشابه
Kernel Hyperalignment
We offer a regularized, kernel extension of the multi-set, orthogonal Procrustes problem, or hyperalignment. Our new method, called Kernel Hyperalignment, expands the scope of hyperalignment to include nonlinear measures of similarity and enables the alignment of multiple datasets with a large number of base features. With direct application to fMRI data analysis, kernel hyperalignment is well-...
متن کاملDeep Hyperalignment
This paper proposes Deep Hyperalignment (DHA) as a regularized, deep extension, scalable Hyperalignment (HA) method, which is well-suited for applying functional alignment to fMRI datasets with nonlinearity, high-dimensionality (broad ROI), and a large number of subjects. Unlink previous methods, DHA is not limited by a restricted fixed kernel function. Further, it uses a parametric approach, r...
متن کاملHyperalignment of Multi-subject fMRI Data by Synchronized Projections
Group analysis of fMRI data via multivariate pattern methods requires accurate alignments between neuronal activities of di erent subjects in order to attain competitive inter-subject classi cation rates. Hyperalignment, a recent technique pioneered by Haxby and collaborators, aligns the activations of di erent subjects by mapping them into a common abstract high-dimensional space. While hypera...
متن کاملFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملOptimized co-registration method of Spinal cord MR Neuroimaging data analysis and application for generating multi-parameter maps
Introduction: The purpose of multimodal and co-registration In MR Neuroimaging is to fuse two or more sets images (T1, T2, fMRI, DTI, pMRI, …) for combining the different information into a composite correlated data set in order to visualization, re-alignment and generating transform to functional Matrix. Multimodal registration and motion correction in spinal cord MR Neuroimag...
متن کامل